
Duniter: A libre currency blockchain generator.
Abstract
Many currency principles involve non-equal rights to monetary creation between
humans. We propose a monetary creation based on the Relative Theory of Money,
which guarantee equal monetary creation for each willing human. This type of
currency can be centralised, however, this could lead to censorship and arbitrary
choices of the central institution. Thus, strongly inspired by Bitcoin example, we
want the currency to be as decentralised as possible, in the transaction network
as in the human identification process. We use a Web of Trust between living
humans for identification. This web of trust allows us to impose personalised
difficulty for transaction validation, keeping the calculation accessible to low-end
hardware and allowing all competent members to secure the currency.

Introduction
Duniter is a software to create and manage “libre currencies”. Libre currency
is a concept defined by S.Laborde in the Relative Theory of Money (RTM)
that was published in 2010. This theory demonstrates the possibility of an
invariant monetary unit : the Universal Dividend. Doing so, the RTM answers
the question :

How should a currency be created to match the principle of equality
between all humans, now and between generations ?

The results of this demonstration implies a monetary creation :

• on a regular basis
• for each human being
• which amount has to be reassessed on fixed intervals according to a fixed

formula.

Thus, Duniter project will associate a human to a digital identity. It will use a
Web of Trust with specific rules. As the number of members may evolve, the
Universal Dividend has to be created according to the formula :

UD(t+1) = UD(t) + c2 * (M(t) / N(t))

Duniter is based on a decentralized Blockchain. This technical choice allows
irreversibility of transaction and uncensorability of trades and identities. While
inspired by Bitcoin, Duniter uses a Web of Trust and the Proof of Work to secure
the computation network, thus making obsolete the power race model used in
Bitcoin.

The first currency created through Duniter is Ğ1, pronounced “June”. It was
created on the 8th. March 2017. This whitepaper uses Ğ1 parameters as examples
; however, one can create another libre currency with custom parameters while
still using Duniter software.

1

1. State of the art : Bitcoin case
Duniter uses the crypto-currency concept introduced by Bitcoin1, which is to
use cryptographic tools such as signatures to create trustless digital currencies.
Duniter fits this definition, but it has two completely different principles than
Bitcoin : the Web of Trust and the Universal Dividend . These differences are
on both monetary and technical aspects.

1.1. Monetary creation of Bitcoin : a space-time asymmetry

Space-time asymmetry refers to the relative access of individuals to newly created
money2. Concretely, most existing currencies (c. 2020) are both spatially and
temporally asymmetrical for their users. Let’s take Bitcoin as an example to
understand why.

1.1.1. Spatial asymmetry

When new Bitcoins are created, only some Bitcoin users (the miners) are given
new Bitcoins, while everyone else get nothing. We believe this is the first injustice.
However, some might say:

"Miners used their electricity and time to get it!"

... we would answer that this work should not have been rewarded by newly
created Bitcoins. New units should be distributed to the whole community.
Miners should be rewared another way, but not by money issuance. Of course,
Bitcoin cannot create money through Basic Income since Bitcoin users are not
strongly identified, and one might benefit from money creation multiple times if
they owned several wallets. Duniter gets rid of this problem by identifying its
users and creating the same amount of Basic Income to everyone.

1.1.2. Temporal-asymmetry

Bitcoin has an absolute limit of 21 million BTC (its unit of currency), which
means ever fewer bitcoins will be created over time until no new BTC are being
generated. So, once the first adopters have mined every bitcoin, how will future
joiners get Bitcoins? Just like most of us do for Euros or Dollars: to get money,
they will have to work for the ones who already own it.

We believe this is the second injustice. Every member of a monetary community
should be equal concerning monetary creation, and get the same relative amount
of money over time, even if they are a late adopter. Duniter aims to fix this by
making the Universal Dividend (a.k.a. UD) grow by the time according to precise
rules, thus making members equal toward money issuance on a half-lifespan.

Most currencies present one of these two asymmetries, including metal currencies
and mutual credit, as exposed in the RTM.

1Bitcoin Whitepaper, S.Nakamoto, 2008: bitcoin.org/bitcoin.pdf
2Relative Theory of Money, S.Laborde, 2010: en.trm.creationmonetaire.info/

2

https://bitcoin.org/bitcoin.pdf
http://en.trm.creationmonetaire.info/

1.1.3. A solution

Bitcoin has taught us that it is possible to create a currency system allowing one
to both create digital money and to exchange it without a central authority. What
we need to change is the way money is issued so we finally have a symmetrical
system. We need Bitcoin + Universal Dividend. But Universal Dividend
implies that the community consists of only identified people. This is where the
Web of Trust (WoT) comes into place.

This concept, introduced by cryptography with the OpenPGP format3, allows
us to identify people in a decentralized manner. It works as follows: each person
creates a personal identity that is linked to its cyptographic certificate. The
identity must be confirmed by others members who use their own cryptographic
key. It is that simple: people choose who is part of the community and who is
not, not a central authority.

However, Duniter will not use OpenPGP for its cryptographic features: Elliptic
Curves4 will be used instead for the conciseness of its generated keys and its
pratical advantages. Duniter has its own Web of Trust principles, that will be
exposed later.

1.2. Proof-of-Work mining : a power race

In Bitcoin Model, the calculation and incentive principles cause a power race :
new Bitcoins are created for the owners of the most numerous, powerful (and
energy-consuming) computers. This leads to a power race an places the control
over the currency in the hands of the richest hardware owners. We want to
make Duniter blockchain validation much less energy and hardware consuming
while keeping a strong level of security. This will be further explained later.
A consequence of this choice is the participation of low-end hardware in the
Duniter network, leading to a better decentralization of blockchain validation.

1.2.1 What about Proof of Stake ?

Proof of stake consensus algorythm was first introduced in 20125. The basic
principle is to allow the richest wallets to issue blocks, putting their coin balance
as a “stake” they would lose in case of cheat.

At the time of conceiving Duniter, the PoS algorythms had not been tested
enough to be used as a fundamental base. We did not chose this consensus
principle. Moreover, the principle of allowing owners of large amounts of money

3OpenPGP protocol defines standard formats for encrypted messages, signatures, private
keys, and certificates for exchanging public keys. The GNU Privacy Handbook, M.Ashley,
1999 : www.gnupg.org/gph/en/manual.html#AEN335

4High-speed high-security signatures, D.J.Bernstein, N.Duif, T.Lange, P.Schwabe, B-Y.Yang.
Journal of Cryptographic Engineering 2 (2012), 77–89. cr.yp.to/papers.html#ed25519.

5PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake, S.King & S.Nadal, 2012 :
archive.org/details/PPCoinPaper

3

https://www.gnupg.org/gph/en/manual.html#AEN335
https://cr.yp.to/papers.html#ed25519
https://archive.org/details/PPCoinPaper

to validate transaction can only lead to placing power over the currency in the
richests hands : this is contrary to the symmetical principles of a libre currency.

2. Duniters Blockchain
Duniters Blockchain follows the basic principles of Bitcoins. This is essential for
synchronization between peers, as to prevent double-spend attacks. However,
Duniters Blockchain will store different informations than Bitcoins.

The basic use of Blockchain will be registering transactions. For this part, we use
the same principles as Bitcoin : transactions have inputs (spending accounts) and
outputs (receiving accounts). But contrary to Bitcoin, no generation transaction
exists : monetary creation happens only through UD. So, in Duniters Blockchain,
Inputs can be either:

• a former transaction (as in Bitcoin)
• a Universal Dividend (specific to Duniter).

Duniters Web of Trust is also written in the Blockchain. The identity of each
member gets registered much like transactions are, with a strong link to the
time reference. Thus, the Blockchain is a representation of a space-time frame
of reference, where “space” are members of the WoT and “time” the basic
blockchain units : the blocks. On each point of time, one can determine which
account is legitimate to create the UD, only with a blockchain analysis.

2.1. Spam countermeasures

An issue of most cryptocurrency projects is to prevent the common ledger from
growing too much. This would require nodes to have a lot of storage and
computing power to be usable. In particular, we don’t want an attacker to be
able to make the Blockchain grow too fast. Most projects implement transaction
fees as a way to prevent this, making the attacker lose money. We don’t want
to introduce this mean since a currency with automatic fees on transactions
is no more neutral. Several countermeasuers against such spam attacks are
implemented.

2.1.1. Minimum output amount

Fixing a minimal output amount reduces the power of an attack. Duniter deals
with cents of Ğ1 or 1/1000 of the first UD. An attacker could create thousand
accounts with only 1 UD. To prevent this, a valid transaction must have output
amounts of minimum 1Ğ1. This reduces the power an attack by 100.

2.1.2. Limited block size and chainability

The block size is always limited. While the protocol allows this limit to evolve to
address scaling issues, an attacker cannot register as many transaction as they
wish.

4

With the same goal to prevent too many transactions to get registered, while
transactions can be “chained” (refer to another transaction in the same block),
the chainability of transactions is limited to 5.

2.2. Scaling

Most of the time, the scaling issue rises for distributed systems that should work
on a very large scale. This is not the case of Duniter, for multiple reasons :

• Ğ1 is the first libre currency, and is still experimental on the monetary
creation principle. We don’t want it to reach the whole world, we only
want it to work, to validate or invalidate the RTM. Moreover, the rules
chosen for the Ğ1 WoT should limit its size to around 16 million members.

• Duniter’s aim is to be used to create multiple libre currencies, that would
fit local or regional economies. As a consequence, it would deal with less
transactions than if it was a world-scale system. The RTM proposes a
formula to calculate the exchange rate between two currencies, that could
be used to create automatic exchanges for a member travelling away from
their community.

However, Duniter has assets that will help if the number of users and transactions
grow.

2.2.1 Dynamic block size

While Bitcoin has a fixed block size, Duniters blocks size can evolve. On low
use of the blockchain, the maximal block size is 500 bytes. On high use of the
blockchain, the maximal block size would be 110% of the average size of the
current window blocks(see “personalised difficulty” part for more information).
This way, the blocks are bounded in size, but can slowly grow if a massive and
legitimate use of the blockchain needs it. The block size (in bytes) is limited as
so :

block_size < max(500 ; CEIL(1.10 * (average block size))

2.2.2. Lightning Networks

The Lightning Networks6 allow almost instant and off-chain transactions. They
were first implemented on Lightcoin, and are now on Bitcoin. One of their
benefits is to make the blockchain store a lot of transactions at once, thus
reducing the groth of the blockchain. The Duniter protocol allows XHX() and
CSV() unlock conditions that are necessary to implement Lightning Networks.
While not available yet, this payment channel might get implemented when
needed.

6The Bitcoin Lightning Network, J.Poon & T.Dryja, 2016 : lightning.network/lightning-
network-paper.pdf

5

http://lightning.network/lightning-network-paper.pdf
http://lightning.network/lightning-network-paper.pdf

2.2.3. Unit base

As the Universal Dividend grows exponentially, with time Duniter nodes would
have had to deal with always largest amounts, eventually reaching the BIGINT
limit. To avoid this, the amounts are expressed with a unit base in base
10. We want the UD amount to always fit in 4 digits. To manage it, the
unitbase is updated each time the UD value reaches 100.00 : it goes from
99.99*10ˆ(unitbase) to 10.00*10ˆ(unitbase+1). All the unit amounts are
thus divided by 10. While this might seem strange, this process has already
hapened in state currencies. Moreover, the amounts expressed in UD will not
change.

With a monetary growth of 10% each year and a stable population, such a change
of unit base would happen each 25 years.

3. Duniter Web of Trust
3.1. Basic Principles

In order to identify “members” accounts - which create monetary units - and
other accounts, Duniter uses a Web of Trust. This can be summarized into few
principles:

• Each account becomes a member if it received a minimal number of
certifications - 5 for Ğ1 currency.

• Only members accounts can send certifications. Certifications have a
limited lifespan.

• A certification indicates that the sender accepts the receiver as a legitimate
identity.

The aim of the WoT is to identify a blockchain account to a living human.
According to Lauterbach et.al7, the strengh of a relationship should be considered
when building a vouch system. For this reason, the Ğ1 Web of Trust rules are
expressed in a licence stating what WoT certifications are. A certification
represents a strong human relationship : one may certify a close relative, not an
acquaintance. Each member has to accept this licence before being included in
the WoT. Thus, if a member is part of an attack on the currency, they can be
found by mutual relatives. Additional security rules occur to prevent cheat and
attacks on a large scale.

Note that non-members accounts can use the currency, but cannot create money.
Non-members accounts can be used by individuals as secondary wallets, or by
institutions.

We were inspired by the OpenPGP Trust system8. However, the OpenPGP trust
7Surfing a Web of Trust, Reputation and Reciprocity on CouchSurfing.com, D.Lauterbach,

H.Truong, T.Shah, L.Adamic: snap.stanford.edu/class/cs224w-readings/lauterbach09trust.pdf
8Public key validation on GnuPG manual, M.Ashley, 1999 :

www.gnupg.org/gph/en/manual.html#AEN335

6

http://snap.stanford.edu/class/cs224w-readings/lauterbach09trust.pdf
https://www.gnupg.org/gph/en/manual.html#AEN335

principles aim at defining trust from a particular point of view while Duniter
needs to identify humans for the whole community. To achieve this goal, while
OpenPGP allows each user to tweak its trust parameters individually, Duniter
sets rules in the “genesis” block for the whole community.

3.2. Why do we need a Web of Trust ?

There are two reasons we need it :

1. To make sure that only one Universal Dividend is produced per member
at each specified creation interval. In the Ğ1’s case this interval is set as
daily 86 400 seconds, it is the monetary parameter known as dt.

2. To identify the nodes hashing the blocks and assign each a personalised
difficulty. This custom difficulty proof of work is there to avoid the
blockchain’s validation mechanism becoming too centralised as is the case
with many ’non-libre’ cryptocurrencies.

Monetary parameter : Each currency that use Duniter has its
own blockchain whose behaviour is dictated by a set of ‘parameters’
defined in block zero - the so-called genesis block - that can be
tweaked to achieve the desired results. At the time of writing the
Whitepaper, the Duniter Blockchain Protocol (DUBP) has a total
of 21 parameters of which 10 are for the WoT alone. We’ll focus on
these 10.

Suffice to say that in the Ğ1’s case, the DU is created every 24 hours
- 86 400 seconds. This interval is set through the time derivative dt
parameter and can have a different value in other implementations
of the protocol.

We want to make sure that each member can only have one account. As we
all know, achieving zero-risk isn’t possible9. Our goal is therefore not to create
a WoT within which fraud would be absolutely impossible, but instead to
discourage it. Here is a rewording of our goal in 4 smaller ones :

1. Make the certification process lengthy enough that all members exercise
due diligence and are wary of risks.

2. Make fraudulent acts as hard as we can to the extent that they become
pointless.

3. Ensure that any Sybil attacks have a negligible impact on the currency by
ensuring that illegitimate double Universal Dividends have no significant
bearing on the legitimate monetary mass

4. Slow the growth of ‘Sybil regions’ to give enough time for the community
to react and isolate the threat.

Sybil attack : A Sybil attack is an attack perpetrated on a reputa-
tion system through the creation of fake identities. A Web of Trust

9The Sibyl Attack, J.R.Douceur: www.microsoft.com/en-us/research/wp-
content/uploads/2002/01/IPTPS2002.pdf

7

https://www.microsoft.com/en-us/research/wp-content/uploads/2002/01/IPTPS2002.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2002/01/IPTPS2002.pdf

is a specific instance of a Reputation System.

There are plenty of Sybil attack scenarios we can think of and just as many
reasons why their perpetrators would want to carry them out. Our objective
is that the configuration of the WoT protects both users and its IT backbone
infrastructure against these attacks.

This means that micro-attacks performed by small groups of individuals looking
for personal enrichment are of no interest to us. The web’s role isn’t to deter
these attacks, this being instead the role of the community. Just like the town
you live in is responsible for providing your tap water and electricity but isn’t
responsible for any burglaries, etc. Much in the same way, Duniter’s WoT
guarantees us all a functional currency, but do not detect small fraud.

3.3. The importance of having our own certification system

Centralized identification systems can achieve the goal we want. State Identifi-
cation is an example. However, this has many drawbacks :

• The authority may have arbitrary criteria for identification, for example
preventing people without an official state-provided identity or homeless
people to be included in the WoT.

• Payment might be required to get identified, thus making the monetary
creation not “free”.

• The authority is a point of failure for any attacker.

It is of the utmost importance that we remain free from any state or corporation.
The WoT is an answer to this criterium. To this day we depend only on the
Internet and yet, were it to fail, there are already alternatives being tested
around the world for a decentralised communication network.

3.4. A few foundational concepts on graph theory : a bit of vocabulary

• Graph: set of points -called ‘vertices’- joined by edges -called paths/walks-.

• Simple graph: a graph with no loops and with no multiple edges. That
is, each edge connects two distinct endpoints and no two edges have the
same endpoints. A simple edge is an edge that is not part of a multiple
adjacency -of edges-. In many cases, graphs are assumed to be simple
unless specified otherwise.

• Directed graph: a graph in which the edges have a distinguished direction,
from one vertex to another. A directed edge can also be called a path or
walk. Arrow A –> B is therefore different from arrow B –> A.

• Endpoints: the edge with vertex A –> B has A and B as endpoints,
respectively as start and end of the path/walk.

• Isolated vertex: a vertex whose degree is zero, that is, a vertex with no
incident edges.

8

• Degree of a vertex: number of its incident edges -in and out-.

• Out-degree of vertex A: number of outbound edges / tail ends from A.

• In-degree of vertex A: number of incoming edges / head ends to A.

Figure 1: degrees of a vertex diagram

• Path: -aka “walk”- path to follow to get from vertex A to vertex B.

3.5. Definition of the Duniter Web of Trust

The Duniter WoTs -one per currency- are simple directed graphs without isolated
vertices. The vertices are the members and the edges are the certifications given
and received.

Directed means that the responsibility of issuing a certification is unique and
personal to the certifier. The trust they place in the receiver cannot be imposed
in the other direction although in most circumstances both parties equally trust
each other.

In addition, all vertices are either currently active members or past-members.
Past-member vertices are in a specific ‘deactivated state’ and can no longer issue
or receive certifications although the ones already issued or received to/from
other members are still considered ‘pending’ to avoid a collapse of the WoT. If
these old members don’t come back into the WoT, their pending certifications
will eventually expire and they will switch from ‘deactivated’ to ‘isolated’ vertices.

To wrap up with old members, after a certain period of time - set in the currency’s
parameters - their deactivated vertex is removed from the web and the associated
identity is ‘revoked’. The person who owned the account can no longer use this
identity but is free to join the web with another one.

Identity : An identity is a set of three pieces of information: a
public key, a name and a blockstamp. A blockstamp points to a
specific block in the chain. Its main use is to freeze the point in time
at which an identity was created and to link this identity to a specific
chain and a currency - each currency having its own blockchain.

An identity can be in any one of 5 different status: pending, member,
old member, revoked or excluded.

Let’s take a simple example:

9

A -> B -> C
|
\--> D

If, for whatever reason, A were to lose its member status, the web would crumble
and all other members would be excluded as a consequence. To avoid this, the
certification from A –> B will remain valid until its expiry date, leaving enough
time for B to receive certifications from C or D.

Because our WoT doesn’t have any isolated vertices, each new identity created
needs to be pulled into the web with all of the certifications it has received, all
in the same block. This calls for a temporary ‘buffer’ storage space for pending
identities and the certifications they have received. This storage space is called
‘the pool’ of Duniter nodes, which we could also have called the ‘sandbox’ as
that’s the name used in Duniter’s code. Duniter nodes inclued other ‘pools’ for
other documents and metadata not mentioned here.

3.6. Exploring the rules behind a Duniter Web of Trust

The Duniter WoTs - one per currency - works with a set of eight fundamental
rules enforced through eleven different parameters. Ten of these parameters
are set within the genesis block, the eleventh one - msPeriod- having being
hard-coded in the Ğ1’s code subsequently.

3.6.1. Distance rule and referent members (stepMax and xPercent)

These two parameters are closely linked and together define the ‘distance rule’.
The ‘distance rule’ can only be described after defining what a ‘referent member’
is:

Referent member: member A is said to be ‘referent’ if and
only if the total of their degrees are greater than or equal to
CEIL-Nˆ-1/stepMax where N is the total number of members. As
the size of the web will grow this number will grow too, meaning it
will take more certification issuances to become a referent member.
The number of certifications needed to become a member shouldn’t
change.

Let’s now define the distance rule:

Distance rule: member A is said to observe this rule if and only if
for a subset xPercent % of referent members R there exists a path of
length less than or equal to stepMax between R and A.

Referent members only exist so that the distance rule can take effect, they
have no special privileges over non-referent members. In a perfect web, that is
one in which each member has certified all members they legitimately can, all
members would be referent members. However, because the web progressively
grows in size and because members die and are replaced by new ones, there are

10

always members at any given time t who haven’t yet certified all members they
legitimately could. These members would hinder the evolution of the web if
they were taken into account in the calculation of the distance rule and the web
would effectively stop growing.

Because verifying the application of the distance rule is calculation-greedy, it is
only performed when a new identity gets confirmed into the web or an existing
member gets renewed. There is an exception to this rule: the distance rule is
not observed in the genesis block -when the web is first implemented.

3.6.2. Rule of the minimum number of certifications needed (sigQty)

This is the simplest rule, it essentially says that each member must at any
given time -meaning in any single block- have received at least sigQty active
certifications. If, for whatever reason, member A were to have less than sigQty
active certifications in a given block, they would cease to be a member and be
required to publish a request for identity renewal.

3.6.3. The membership renewal rule (msValidity, msPeriod and
msWindow)

Bear in mind that a membership doesn’t last a lifetime but instead has a lifespan
set to msValidity seconds.

Every single member -or old member who hasn’t revoked his identity or been
excluded- can request a membership renewal so long as the last request was made
more than msPeriod seconds ago. If a member has never requested a renewal,
the date of last renewal is equal to the timestamp at which his membership
was first created. A new request will be stored in the ‘pool’ for a maximum of
msWindow seconds before it’s included in the blockchain. Once again, this can
only happen once/if the member meets both the siqQty rule and the distance
rule -if these criterion are already matched it’s just a case of waiting for a new
block to be mined-.

If a member hasn’t requested a renewal for longer than msValidity seconds,
they automatically cease to be a member. From this moment on, the ex-member
has another msValidity window to renew their membership. When this period
of 2 × msValidity runs out, the membership will expire and this identity will
never be available for use again in the web. If the person so desires, they will have
to publish new identity and membership documents and find enough certifiers,
as any newcomer.

3.6.4. Rule of certification lifespan (sigValidity)

All certifications included in the blockchain expire sigValidity seconds after
they were issued.

11

/!\ The issuance and the inclusion of a certification in the blockchain
occur at different times. When member A issues a certification at
time t1, it gets stored in the pool starting at t1 and only finds its
way into the blockchain at t2 when all of the web’s rules are observed.
Several weeks can thus go by between t1 and t2!!!

3.6.5. Rule of limited supply of active certifications (sigStock)

By ‘active certifications’ we refer to certifications included in the blockchain and
that haven’t yet expired.

The total of active certifications issued by any member at any single time must
be less than or equal to sigStock. When this threshold is reached the member
will have to wait for one of his active certifications to expire before he/she can
issue a new one.

3.6.6. Rule of the time period between two certification issuances.
(sigPeriod)

As soon as a certification issued by member A gets included in the blockchain,
they will be unable to issue a new one before another sigPeriod seconds.

3.6.7. Expiry of a certification issuance (sigWindow)

When a certification is issued by member A, it will be stored in the ‘pool’ for
a maximum of sigWindow seconds. If the certification hasn’t been included in
the blockchain by then, it will be cancelled and the member’s sigStock will be
repleted by one.

3.6.8. Lifespan of a ‘pending’ identity (idtyWindow)

When a new identity is created, it is stored in the ‘pool’ for a maximum of
idtyWindow seconds. If the person hasn’t achieved member status by then, the
certification will simply be cancelled.

3.7. Details on some of the WoT’s peculiarities at the genesis block

The aforementioned rules can only be enforced with an existing web. They
cannot be observed when first creating the web, that is when defining the genesis
block.

Only rules 2 and 5 can be observed at the genesis block.

The genesis block has to be manually created by the founding members. In
practice this means that there must be a choice on which identities to include
on the premise that all of them observe rules 2 and 5. In addition, the genesis
block must be signed with the private key of one of these identities.

12

As soon as the genesis block has been created, the other identities can start
mining the blockchain and the member who created block #0 effectively looses
the decision power he had at creation.

3.8. Why these rules and application cases in the Ğ1

3.8.1. Distance and maximum size

The distance rule is there to curb the maximum size of a Sybil region as well as
that of the monetary community as a whole. The xpercent parameter prevents
the creation of a ‘faction’ that could take hold of the blockchain.

Figure 2: Sybil region

The Sybil regions are isolated from the rest of the graph in the sense that they
can only receive certifications from other ill-intentioned Sybil members. As a
consequence, the shortest edge/path between a legitimate member and a Sybil
one has to have the attack’s author as an endpoint. The maximum depth the
Sybil region can attain is therefore contingent on the distance between the
attacking edge-s- and the xpercent% closest referent members, this distance
is known as stepAttackers. The maximum size of a Sybil region created by
sigQty members depends on the L parameter, defined as L = sigQty/sigStock:

MaxSybilSize= (sigStock-sigQty)*(1-L^(stepMax-stepAttackers))/(1-L)

The maximum size of the Web of Trust is given by the following formula:

WoTmax = (sigStock)*L^(stepMax-1)

However we know for a fact that members will never use all of their available

13

certifications. According to Dunbar10, on average, one is able to maintain
relationships to around 150 people. Being conservative, we will consider that on
average, each person will certify 50 accounts. We can calculate the size of the
average web of trust WoTavg :

WoTavg= (50)*(sigQty/50)^(stepMax-1)

Our goal with the Ğ1 is to create a community of about one million members to
test the consequences of a libre monetary system. Let’s see how we can tweak
the pair of sigQty and stepMax- to reach this size:

Figure 3: Average WoT size graph as a function of sigQty and stepMax

The maximum size of a Sybil region grows linearly with sigQty but exponentially
with stepMax. Logic has it that we need to keep stepMax as low as possible to
ensure sufficient strength to the web. The above graph shows that the lowest
value of stepMax for a web of a million members is of 5. This is an order of
magnitude and is likely to be much higher in reality, we cannot measure it for
sure.

For sigQty we can choose a value of 4 for a web of 1.5 million members or
5 for half a million members. Bear in mind these are gross figures and could
be significantly higher, we are talking anywhere between 1 and 10 million in
reality. Calculating WOTavg gives us a pretty good idea of how the web would
scale bearing in mind that it considers all members are referent members too
-which isn’t the case as explained previously-. Hence the maximum size of the
web is likely larger, a ballpark figure of half a million is enough for now especially
knowing that the smaller sigQty is, the easier it is to launch a Sybil attack -it’s

10Neocortex size as a constraint on group size in primates, R.I.M.Dunbar, Journal of Human
Evolution, 1992

14

easier to find four accomplices than five-. For security reasons we have settled
on five:

stepMax = 5
sigQty = 5
sigStock \>= 50

The maximum size of a Sybil region therefore is:

(sigStock-sigQty)*(1-(sigStock/5)^(5-stepAttackers))/(1-(sigStock/5))

with sigStock = 50 we have a Sybil region of:

45*(1-10^(5-stepAttackers))/(-9)

A good practice for protecting the web is to maximise stepAttackers. That’s
why we decided that referent members in the genesis block had to be at least
four steps away from each other.

Another way to keep a Sybil attack at bay, were it slow enough for members to
notice it, would be for referent members to ‘stretch’ the web intentionally to limit
the growth of the region by ensuring that the attackers’ legitimate certifications
received in the first place aren’t renewed. But what if bot accounts were created
and certified each other super fast and following all rules, how would we counter
that? By introducing a minimum length of time between two certifications!

3.8.2. Time is our friend

To help us deter a Sybil attack, we’ve decided to impose a minimum period of
time between any two certifications issued from a single account. This parameter
called sigPeriod affords us a greater chance to detect the formation of a ‘hostile’
faction.

Here is a graph showing the evolution of a Sybil region with the variation of
sigPeriod. The simulation considers that honest members and attackers both
issue a certification each sigPeriod interval, in days:

As we see, there is a strong link between the growth speed of the region and
sigPeriod. As evidenced here, we need a sigPeriod high enough in order
to ensure that the legitimate web can grow at least as fast as a Sybil region.
In addition, the higher sigPeriod is, the more members will exercise their
certification power gingerly, the action coming at a higher ‘cost’.

There are numerous advantages to giving sigPeriod a high value and no technical
barriers to it, hence our choice of five days.

We could have also gone for one week for the sake of simplicity. However there is
an underlying idea behind our choice which was quite simply the pace of today’s
life. Certifying someone can be a lengthy process as one needs to make sure they
are correctly applying the Ğ1 licence and people nowadays wait for the weekend

15

Figure 4: size of the WoT according to sigPeriod and stepAttackers

to enjoy a bit of free-time. Thus the idea to allow one to certify at the end of
every working week -five days- instead of a whole calendar one.

3.8.3. Trust me now, trust me forever ? (sigValidity, msValidity)

There would be two main drawbacks to a lifetime membership in the Ğ1’s Web
of Trust:

• First of all, some members will pass and those accounts should no longer
produce the Universal Dividend.

• Secondly it is of the utmost importance that ‘rogue’ accounts can be
excluded from the web at some point.

To achieve this, certifications have a limited lifespan. Members need to seek
renewal from their peers after sigValidity time. On the other hand, this time
can’t be too short that members would spend more time seeking renewal than
they would exchanging in the currency. Furthermore, a certification with too
short a lifespan would foster careless certifying behaviours. The act of certifying
must have a high-enough ‘perceived’ cost to make it feel like an important
act. Lastly, we also wanted this lifespan to be easy to remember. Historically
speaking, we first settled on the values of sigPeriod and sigStock, meant one
could issue all of their certifications in 495 days, one year was therefore not long
enough. We deemed three years to be too much and that’s how we agreed on
two years in the end.

Thinking that a deceased member could continue producing the UD for two
long years without anyone benefitting from it was also something we needed to
address. We chose a value of one year for msValidity. The act of renewing
every year is done through one of the clients interacting with the blockchain,
through a simple click on a button. This parameter is less important than others
and is mostly there to ‘prune’ the web of past or inactive members who don’t
renew their membership.

16

3.8.4. Keeping the pools free of information glut (idtyWindow,
sigWindow, msWindow)

The pools need to be cleaned up on a regular basis to avoid them clogging up
with information and to ensure that machines with less calculating power can
still run a Duniter node.

To achieve this, identities with pending membership approval and the corre-
sponding certifications have to remain the shortest time possible in the pool
while still having a chance of making it into the blockchain.

For the Ğ1, our opinion was that two months would be enough for all potential
certifiers to agree on a specific identity to certify. We also wanted a time period
that would be easy enough to remember by all. We settled on two months, and
gave this value to all three parameters idtyWindow, sigWindow and msWindow.

3.8.5. Avoiding single members from ‘knowing too many people’
(sigStock)

We considered that on average, each person will certify 50 people. However,
we know for a fact that some members will use more than 50 certifications.
The maximum social network of one individual is around 150 people11. Being
conservative, we settled on a maximum certification number sigstock of 100.
Since sigStock’s impact on the size of a Sybil region is fairly limited, we did
not investigate further this parameter.

3.8.6. Avoiding locking minorities (xpercent)

It’s easy enough to become a referent member, one of the Sybil strategies could
therefore be to create a region of referent members. Such a region would grow
slower than otherwise but could confer a locking power to its members by using
the distance rule. That’s why the distance rule cannot be calculated on 100% of
the referent members. Hence the introduction of the xpercent parameter which
defines the percentage of referent members needing to be less than five edges
-steps- from each other.

This percentage needs to be low enough to prevent the formation of a locking
minority -referent Sybil members being too far from legitimate referent members-.
On the other hand, it needs to be high enough so as to restrict the maximum
size of the Sybil region through the distance rule. The xpercent parameter was
one of the hardest to define, therefore we might decide to change its value during
the Ğ1 experiment.

We were inspired by the Pareto principle12: if at least 20% of members give
good density to the web, 80% of the referent members will be five or less steps
from any other member -referent or not-. The maximum value for xpercent is

11Neocortex size as a constraint on group size in primates, R.I.M.Dunbar, Journal of Human
Evolution, 1992

12Pareto principle : en.wikipedia.org/wiki/Pareto_principle

17

https://en.wikipedia.org/wiki/Pareto_principle

therefore 80%, anything above that and the distance rule could be too restrictive
for legitimate use cases. With security our top concern, we chose the maximum
value of 80%.

3.8.7. Spam protection with (msPeriod)

This parameter stands out a bit on its own, as it was added after the genesis
block. It is there to protect the Duniter P2P infrastructure against ‘spam’
attacks. We had to think of a strategy against attacks such as high-frequency
membership renewal requests -i.e: in every block, every five minutes- or worse
still, hundreds of these requests per minute to flood the Duniter nodes. Without
such limits, nodes are supposed to address all renewal requests, even in cases
where they were last published five minutes ago! The msPeriod parameter was
given the same value as idtyWindow, sigWindow and msWindow, i.e. two months.

4. Proof of Work with personal difficulty
As each P2P cryptocurrency, Duniter has a way to synchronize its peers. It uses
a proof of Work (PoW) to write the Blockchain on a regular basis, much like
BitCoin. However, Duniter has a unique asset : the WoT, where each member
represents a unique living human.

This difference might seem minimal, but it has an enormous consequence :
while Bitcoin uses a race based on computing power only, Duniter creates a
validation frame that is no race. It is more like a lottery where each “winning”
member is excluded for a certain amount of time. Moreover, those who have
more computing power get a handicap, as a way to let other peers win. All this
is possible through the WoT, that allows personalised difficulty while PoW is
used for synchronization. All the rules of this PoW/WoT mechanism can be
verified by reading the blockchain. As a consequence, a peer only needs to have
an up-to-date copy of the blockchain to apply the rules. A view of the whole
network is not needed.

Another strong difference is that forging peers are not rewarded by the protocol.
There is no economical incentive on forging lots of blocs, neither on having a lot
of computing power.

One could say that Duniter uses a PoW that needs very low energy consumption
compared to BitCoin : an “ecological” PoW ?

4.1. Why do we need Proof of Work ?

Duniter nodes share a database as part of a p2p environment. The proof of work
(PoW) allows machines to synchronize with each other. In Duniter’s case, the
blockchain is our database, and acts as a ledger keeping a trace of all transactions,
status of the WoT and more. How can we let several machines add data (ie: a
transaction) at the same time? In addition, how do we settle on how much time
has gone by since the blockchain was last updated? Agreement on time is of the

18

utmost importance as we want to create Universal Dividends on a regular basis,
and keep track of membership status, both in human time.

Proof-of-work provides a clever solution to both problems:

1. Any machine can write into the blockchain (create a new block) but is only
authorised to do so if it has previously solved a mathematical equation that
require a certain amount of work. The challenge has to be hard enough to
prevent two machines to solve it at the same time, ensuring the unicity of
a block’s creator.

2. Solving this challenge takes a certain amount of time, which depends on the
calculating power of the whole network. This provides a common ground
for defining the needed time reference. A block time is set (ie: 1 block
= 5 min) and Duniter adapts the challenge difficulty to get an average
duration corresponding to this block time.

4.2. Only members can “mine”

One of Duniter’s major differences with other PoW-based cryptocurrencies is
that only members are allowed to author blocks. Each block is signed with
the member’s private key, allowing the algorithm to determine a personalised
difficulty.

This personalised difficulty eliminates the rat-race for the most sophisticated and
powerful mining equipment. Another benefit is the fact that no “supercomputer”
can take control of the blockchain. Lastly, Duniter implements a rotation in
forging members thanks to this personalized difficulty.

This lightweight PoW is much less energy-consuming than other PoW cryptocur-
rencies. Members can mine with anything from a raspberry pi to a privacy-first
internet cube.

4.3. How does it work ?

4.3.1. The hash (aka digest)

Example of a valid hash:

00000276902793AA44601A9D43099E7B63DBF9EBB55BCCFD6AE20C729B54C653

As you can see this hash starts with five zeros which was very hard to achieve
and took a lot of work for someone’s computer. Hence the term “proof of work”.

4.3.2. The common difficulty

A common difficulty is needed to settle on a yardstick for our time reference. Its
role is to make sure the blockchain moves forward at a steady pace - one block
every avgGenTime seconds, avgGenTime being one of the 20 parameters behind
the Duniter protocol-.

19

This difficulty’s initial value can be set to any arbitrary value (70 in Duniter
v1.5.x) and then acts as a spring, regulating blocktime creation by increasing
itself if the creation interval drops under avgGenTime and vice-versa.

4.3.2.1. How is difficulty applied ?

The numeric value of difficulty is taken from an array of possible hashes out of
all possible hashes. In DUBPv13 the hash of a block is its sha256 hexadecimal
hash.

To understand the difficulty, we make a euclidiean division of the difficulty by
16.

Here’s an example with a difficulty value of 70 :

70 // 16 = 4 with a remainder of 6.

The valid hashes are the ones starting with four zeros and with the fifth character
less than or equal to 9 (6 in hexadecimal notation). The valid hashes are then
written as starting with : 0000[0-9]. This is a bit different from Bitcoin, where
the difficulty is only ruled by the number of zeroes.

4.3.2.2. The Nonce

When a member is forging a new block, his computer freezes the block’s content
and changes the Nonce until the hash reaches the required number of zeroes.

The nonce allows us to mine a new block by finding a hash. The hash value allows
us to determine the difficulty level of the proof-of-work performed. Examples of
possible Nonce values:

• 10100000112275
• 10300000288743
• 10400000008538
• 10700000079653
• 10300000070919

In reality the Nonce value follows a pre-determined format akin to
XYY00000000000. The Nonce’s value isn’t the number of attempts but
rather a value within a set of possible ones. This is how the Nonce is built:

• X is a number assigned to a specific peer. Let’s assume that someone has
several nodes each with the same private key, this would lead to possible
collisions if this person were to mine the same block with different nodes.
Each block node ? will therefore have its own unique X to prevent this
from happening.

• Y is the number of cores of the processor. The Nonce starting with
107[...] belongs to a seven cores processor, while 199[...] could be
the proof generated by a 99 cores processor.

20

The rest of the Nonce, the part that follows after the XYY, is the numerical
space for this individual node and is unique to each of the CPU’s core. This
space is comprised of eleven digits (00000000000). For the sake of accuracy, we
use the term CPU in the wider sense, it can be understood as a bi-CPU for
example. We take into consideration the number of cores for the resulting PoW.

4.4. Personalised difficulty

Earlier in this article, we explained that the personalised difficulty is the new
and key concept that sets Duniter apart from other PoW-based cryptocurrencies.

Here is how this personalised difficulty is calculated and assigned:

It is determined by a combination of two different constraints with complimentary
roles: the exclusion factor and the handicap.

Let powMin be the common difficulty, exFact a member’s exclusion factor and
handicap their handicap. This member’s personalised difficulty diff is:

diff = powMin*exFact + handicap

4.4.1. Understanding exFact, the exclusion factor

Members who have never produced blocks or haven’t for quite some time are
assigned an exclusion factor of 1. Their personalised difficulty is therefore simply
the sum of powMin + handicap.

Before reading on, let’s precise the role of this exclusion factor. When a member
adds a block to the chain, his exFact jumps up from one to a very high value,
to prevent them from forging other blocks immediately after and taking control
of the blockchain.

The exclusion factor will then rapidly return to one. This delay is expressed as
a number of blocks. It is calculated as a proportion of the number of members
forging. In the Ğ1’s case, this proportion is 1/3, meaning that if there are fifteen
members currently forging, the member’s exclusion factor will drop down to one
after five blocks.

4.4.1.1. What is intended by “the number of members forging” ?

We mean the number of members trying to create the next block. In reality,
there is no way to precisely know how many members are calculating at any
given time, because it is impossible to view the entire network. But we need this
information, whithout which assigning a personalised difficulty is impossible. To
achieve this, Duniter looks back at the blockchain and assumes that there is as
much members forging as those who have found at least one block in the last
blocks in the current window, minus the very last one.

21

4.4.1.2. Current window

We use the concept of current window. The current window is the number of
blocks we look back at to determine how many members are forging. Let’s see
how it works:

• issuersFrame is the size of the current window in blocks.

• issuersCount the number of members who have calculated at least one
block during the current window.

Both issuersFrame and issuersCount are block fields. When first starting a
blockchain, the very first block has an issuersFrame=1 and an issuersCount=0.
The genesis block is excluded as there are no members in the current window!

From the second block onwards (block #1) we track the variation of
issuersCount. The member having mined block #0 enters the current window
and in block #1 we will therefore mention issuersCount=1.

issuersFrame then varies as follows:

• if issuersCount increases by N (with a maximum step of N = 1), then
issuersFrame will increase by one unit over a period of 5N blocks.

• Conversely, if issuersCount decreases by Y (with a maximum step of Y
= 2 = current window inching forward + loss of one calculating member),
then issuersFrame will decrease by one unit during 5Y blocks.

• When such events overlap, issuersFrame evolves as so :

bloc event issuersFrame
T Babar writes a block and enters issuersCount 160
T+1 Celeste leaves issuersCount 160 +1 = 161
T+2 N/a 161 +1 -1 = 161
T+3/4/5 N/a 161 +1 -1 = 161
T+6 N/a 161 -1 = 160

The calculation can be found under rules BR_G05 and BR_G06 of the DUP
protocol.

4.4.1.3. exFact and the personalised difficulty

We explained that exFact spikes immediately after the member has found a
block. It decreases then rapidly to 1 after a number of blocks equal to 1/3 *
issuersCount. Let’s see precisely how we calculate exFact:

• nbPreviousIssuers is the value of issuersCount at the last block N found
by the member.

• nbBlocksSince is the number of blocks found by the rest of the network
since block N.

22

https://git.duniter.org/nodes/common/doc/blob/master/rfc/0009_Duniter_Blockchain_Protocol_V11.md#br_g05-headissuersframe
https://git.duniter.org/nodes/common/doc/blob/master/rfc/0009_Duniter_Blockchain_Protocol_V11.md#br_g06-headissuersframevar

• percentRot is the number of not excluded peers we want. It is a monetary
parameter, its value is 0.67 for Ğ1 currency.

a = FLOOR (percentRot * nbPreviousIssuers / (1 + nbBlocksSince))
exFact = MAX [1 ; a]

The FLOOR is a simple truncate function. For exFact to exclude the member,
we need :

(percentRot * nbPreviousIssuers / (1 + nbBlocksSince)) >= 2

We can see that the member is not excluded if nbBlocksSince is greater than
1/3 of the calculating members. Take as an example nbPreviousIssuers = 6
and nbBlocksSince = 3:

(0.67* 6 /)1 + 3)) = 1.005 -> exFact = 1

However, if the member computed a block one block ago (nbBlocksSince = 1),
exFact = 2 and the forging peer is excluded:

(0.67 * 6 / (1 + 1)) = 2.01 -> exFact = 2

Moreover if the last block was authored by the said member, then:

nbBlocksSince=0 and
exFact = 0.67 * nbPreviousIssuers

ExFact value increases according to the number of members calculating. Thus, if
there is enough members calculating, even mining farms would be excluded. We
have therefore succeeded in our intent to deter attempts to seize the blockchain
and its currency.

However, at any time t, the two-thirds of calculating members all have an
exclusion factor of 1, even though they might not all have the same computational
power at hand. If the personalised difficulty only took into account the exclusion
factor, then only the members with the highest computational power from the
remaining third would be able to author new blocks and the other 2/3s would
almost always be excluded. Lesser machines wouldn’t stand a chance. . .

4.4.2. The handicap

The handicap is the second parameter of the personalised difficulty. Its main
role is to improve the rotation of forging peers. A higher handicap is assigned
to members with higher calculating power, so lesser machines can also compute
blocks. As a consequence, there is no incentive on forging with powerful com-
puters. Security can be achieved with less computing power than with pure
PoW.

The aim is to handicap the half that has authored most blocks (the most powerful
half) to favour the other one. So, the handicap formula will use the median
number of blocks authored by peers within the current window.

23

• nbPersonalBlocksInFrame is the number of blocks authored by a single
member within the current window.

• medianOfBlocksInFrame is the median number of blocks written by the
calculating members during the same timeframe.

a = (nbPersonalBlocksInFrame + 1) / medianOfBlocksInFrame
handicap = FLOOR(LN(MAX(1 ; a)) / LN(1.189))

Let’s unwrap the formula:

(nbPersonalBlocksInFrame + 1) / medianOfBlocksInFrame)

is simply the ratio between the number of blocks authored by the peer and the
median number of blocks. For example, if a peer has authored 9 blocks in the
current window and the median is 5, then the ratio will be (9+1)/5 = 2. The
MAX function allows us to ensure that the handicap has a value at least equal
to 1.

The Napierian Logarithm of this ratio prevents the handicap from becoming
excluding. We want the handicap to level the calculating field so that all peers
stand a chance, not to exclude peers.

If we wanted the handicap to be applied as soon as the median is reached, we
would divide it by LN(1). The problem is that we have already set a minimum
value of 1 with the MAX function. If we were to divide the ratio by LN(1) all
calculating peers would have a handicap \>= 1. In addition, is it really fair to
handicap a member who is right on the median?

That’s why we went for 1.189 rather than 1. A member has to be at least 18.9%
above the median to be assigned a handicap. 18.9% is actually 16ˆ(1/16), the
difficulty factor between two levels of the proof work (hexadecimal hash).

To conclude, you have to remember that :

• The handicap is indexed on the logarithm of the ratio to the median,
• Handicap is only applied on members whose ratio to the median is greater

than the ratio between two levels of the proof-of-work’s difficulty.

Conclusion
Duniter’s Blockchain can be compared to Bitcoin’s : a common document
retracing the history of the currency. However, Duniter registers not only trades,
but also the history of relationships in the community as a mean to identify
a human to a digital account. This way, Duniter has information about the
fondamental reference of RTM : living humans. A libre Currency can be issued
thanks to the Universal Dividend.

More than that, Duniter proposes a new model for securing a Blockchain in an
efficient and decentralized way. Basing the security on a Web of Trust with an
individualised security makes the calculation rules more fair. A side-effect of

24

this choice is a network consisting mostly of low-end computers, maintaining a
good security and helping decentralization of calculation.

The ultimate goal of Duniter project is to allow people to participate in a libre
economy, thanks to a libre currency. What is a libre economy ? The Relative
Theory of Money defines it through four economic liberties :

• The freedom to choose your currency system: because money should not
be imposed.

• The freedom to access resources: because we all should have access to
economic & monetary resources.

• The freedom to estimate and produce value: because value is a purely
relative to each individual.

• The freedom to trade with the money: because we should not be limited
by the avaible money supply.

Those 4 economic freedoms should be understood together, not exclusively. Plus,
“freedom” has to be understood as “non-nuisance”. So here, freedom does not
mean the right to take all of a resource (like water source in a desert) so no more
is available to the others. Now you get it, this is the goal: free economy through
free currency.

Sources :
• Relative Theory of Money, S.Laborde, 2010: en.trm.creationmonetaire.info/
• Bitcoin Whitepaper, S.Nakamoto, 2008: bitcoin.org/bitcoin.pdf
• The Bitcoin Lightning Network, J.Poon & T.Dryja, 2016 : lightning.network/lightning-

network-paper.pdf
• The GNU Privacy Handbook, M.Ashley, 1999 : www.gnupg.org/gph/en/manual.html#AEN335
• High-speed high-security signatures, D.J.Bernstein, N.Duif, T.Lange,

P.Schwabe, B-Y.Yang. Journal of Cryptographic Engineering 2 (2012),
77–89. cr.yp.to/papers.html#ed25519.

• PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake, S.King &
S.Nadal, 2012 : archive.org/details/PPCoinPaper

• Duniter Blockchain Protocol, v13, draft by Elois : git.duniter.org/nodes/common/doc/blob/dubp_v13/rfc/0011_Duniter_Blockchain_Protocol_V13.md
• The Sibyl Attack, J.R.Douceur: www.microsoft.com/en-us/research/wp-

content/uploads/2002/01/IPTPS2002.pdf
• Neocortex size as a constraint on group size in primates, R.I.M.Dunbar,

Journal of Human Evolution, 1992

25

http://en.trm.creationmonetaire.info/
https://bitcoin.org/bitcoin.pdf
http://lightning.network/lightning-network-paper.pdf
http://lightning.network/lightning-network-paper.pdf
https://www.gnupg.org/gph/en/manual.html#AEN335
https://cr.yp.to/papers.html#ed25519
https://archive.org/details/PPCoinPaper
https://git.duniter.org/nodes/common/doc/blob/dubp_v13/rfc/0011_Duniter_Blockchain_Protocol_V13.md
https://www.microsoft.com/en-us/research/wp-content/uploads/2002/01/IPTPS2002.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2002/01/IPTPS2002.pdf

	Duniter: A libre currency blockchain generator.
	Abstract
	Introduction
	1. State of the art : Bitcoin case
	1.1. Monetary creation of Bitcoin : a space-time asymmetry
	1.2. Proof-of-Work mining : a power race

	2. Duniters Blockchain
	2.1. Spam countermeasures
	2.2. Scaling

	3. Duniter Web of Trust
	3.1. Basic Principles
	3.2. Why do we need a Web of Trust ?
	3.3. The importance of having our own certification system
	3.4. A few foundational concepts on graph theory : a bit of vocabulary
	3.5. Definition of the Duniter Web of Trust
	3.6. Exploring the rules behind a Duniter Web of Trust
	3.7. Details on some of the WoT's peculiarities at the genesis block
	3.8. Why these rules and application cases in the Ğ1

	4. Proof of Work with personal difficulty
	4.1. Why do we need Proof of Work ?
	4.2. Only members can ``mine''
	4.3. How does it work ?
	4.4. Personalised difficulty

	Conclusion
	Sources :

